
SUNDIALS: SUite of Nonlinear and
DIfferential / ALgebraic Equation Solvers

Radu Şerban

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Sixth DOE ACTS Collection Workshop
August 25, 2005

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Outline

1 SUNDIALS: overview
2 ODE and DAE integration

Initial value problems
Implicit integration methods

3 Nonlinear systems
Newton’s method
Inexact Newton
Preconditioning

4 Sensitivity analysis
Definitions, applications, methods
Forward sensitivity analysis
Adjoint sensitivity analysis

5 SUNDIALS: usage, applications, availability
Usage
Applications
Availability

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Description

Historical background

CVODE

PVODE

SensPVODE

IDA

SensIDA

KINSOL

SensKINSOL

KINSOL

IDA

CVODES

CVODE

IDAS

ODEPACK VODE VODPK

DASPKDASSL

NKSOL

GEAR

S
U

N
D

IA
LS

FORTRAN ANSI C

2004
today next

2002
2000

1998
1996

1994
1992

1990
1988

1986
1984

1982
1980

1978
1976

1974
1972

Solution of large systems in parallel motivated writing (or rewriting) solvers in C

CVODE C rewrite of VODE/VODPK [Cohen, Hindmarsh, 1994]

PVODE parallel extension of CVODE [Byrne, Hindmarsh, 1998]

KINSOL C rewrite of NKSOL [Taylor, Hindmarsh, 1998]

IDA C rewrite of DASPK [Hindmarsh, Taylor, 1999]

New sensitivity capable solvers in SUNDIALS

CVODES [Hindmarsh, S., 2002]

IDAS [S., in development]

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Description

The SUNDIALS solvers

CVODE - ODE solver

Variable-order, variable-step BDF (stiff) or implicit Adams (nonstiff)

Nonlinear systems solved by Newton or functional iteration

Linear systems solved by direct (dense or band) or iterative solvers

IDA - DAE solver

Variable-order, variable-step BDF

Nonlinear system solved by Newton iteration

Linear systems solved by direct or iterative solvers

KINSOL - nonlinear solver

Inexact Newton method

Krylov solver: SPGMR (Scaled Preconditioned GMRES)

CVODES

Sensitivity-capable (forward & adjoint) version of CVODE

IDAS

Sensitivity-capable (forward & adjoint) version of IDA

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Description

Salient features of SUNDIALS solvers

Philosophy: Keep codes simple to use
Written in C

Fortran interfaces: FCVODE and FKINSOL (FIDA in development)
Matlab interfaces: SUNDIALSTB (CVODES and KINSOL)

Written in a data structure neutral manner
No specific assumptions about data
Alternative data representations and operations can be provided

Modular implementation
Vector modules
Linear solver modules
Preconditioner modules

Require minimal problem information, but offer user control over
most parameters

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Initial value problems

General form of an IVP

F (ẋ , x) = 0

x(t0) = x0

Definition

If ∂F/∂ẋ is invertible, we can formally solve for ẋ to obtain an ordinary differential
equation (ODE). Otherwise, we have a differential algebraic equation (DAE).

DAE as differential equations on manifolds (Rheinboldt, 1984)

ẋ = v(x) ; x ∈ M

Manifold: M = {x ∈ Rn | g(x) = 0}

Tangent space: TxM = {v ∈ Rn | gx (x)v = 0}

Vector field on M: v : M → Rn ; ∀x ∈ M ⇒ v(x) ∈ TxM

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Initial value problems

DAE index

DAEs are best classified using various concepts of their index.

the index of nilpotency (for linear constant coefficient DAE): measure of numerical
difficulty in solving the DAE

the differentiation index: “departure” from ODEs

the perturbation index: measure of sensitivity of the solutions with respect to
perturbations.

· · ·

Definition (Gear & Petzold, 1983)

Equation F (x , ẋ) has differentiation index di = m if m is the minimal number of
analytical differentiations

F (ẋ , x) = 0,
dF (ẋ , x)

dt
= 0, . . . ,

dmF (ẋ , x)

dtm
= 0

such that, by algebraic manipulations, we can extract an explicit ODE ẋ = φ(x) (called
“underlying ODE”).

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Initial value problems

Hessenberg index-1

ẋ = f (x , z)

0 = g(x , z)

gz nonsingular

Example: singular perturbation problems (e.g. chemical kinetics)

Robertson’s example (1966)

A
0.04

−−−−−→
(slow)

B

B + B
3·107

−−−−−−→
(very fast)

C + B

B + C 104
−−−−−→

(fast)
A + B

ẏA = −0.04yA + 104yByC ; yA(0) = 1

ẏB = 0.04yA − 104yByC − 3 · 107y2
B ; yB(0) = 0

1 = yA + yB + yC

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Initial value problems

Hessenberg index-2

ẋ = f (x , z)

0 = g(x)

gx fz nonsingular

Example: modeling of incompressible fluid flow by Navier-Stokes

ut + uux + vuy + px − ν(uxx + uy y) = 0

vt + uvx + vvy + py − ν(vxx + vy y) = 0

ux + vy = 0

with appropriate spatial discretization.

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

Stiff problems

Definition (Curtiss & Hirschfelder, 1952)

Stiff equations are equations where certain implicit methods, in particular BDF, perform
better, usually tremendously better, than explicit ones.

Stiffness can be defined in terms of multiple time scales: If the system has widely
varying time scales, and the phenomena (or solution modes) that change on fast
scales are stable, then the problem is stiff (Ascher & Petzold, 1998)

Stiffness depends on

Jacobian eigenvalues
system dimension
accuracy requirements
length of simulation
· · ·

In general, we say a problem is stiff on [t0, t1], if

(t1 − t0) min
j

<(λj) � −1

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

Forward Euler vs. Backward Euler

Dahlquist test equation
ẋ = λx , x0 = 1

Exact solution: y(tn) = y0eλtn

Absolute stability requirement

|yn| ≤ |yn−1| , n = 1, 2, . . .

Reason: If <(λ) < 0, then |y(tn)| decays exponentially. The problem is
asymptotically stable, and we cannot tolerate growth in |y(tn)|.

Region of absolute stability

S = {z ∈ C; |R(z)| ≤ 1}

where yn = R(z)yn−1 , z = hλ

Forward Euler

yn = yn−1 + h (λyn−1) ⇒ S = {z ∈ C; |z − (−1)| ≤ 1}

Step size restriction: if λ < 0 ⇒ h ≤ 2
−λ

Backward Euler

yn = yn−1 + h (λyn) ⇒ S =
{

z ∈ C; |1 − z|−1 ≤ 1
}

Step size restriction: if λ < 0 ⇒ h > 0

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

Curtiss & Hirschfelder example (1/2)

ẋ = −50 (x − cos(t))

0 0.5 1 1.5
0

0.5

1

1.5

Solution curves
0 0.5 1 1.5

0

0.5

1

1.5

Forward Euler (h = 2.01/50)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

Curtiss & Hirschfelder example (2/2)

ẋ = −50 (x − cos(t))

0 0.5 1 1.5
0

0.5

1

1.5
Backward Euler
BDF(CVODE)

Backward euler & CVODE solution
0 0.5 1 1.5

0

0.5

1

1.5
h=1.974/50
h=1.875/50

Forward Euler

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

Linear multistep methods

General form

K1
∑

i=0

αn,i xn−i + hn

K2
∑

i=0

βn,i ẋn−i = 0

Two particular methods

Adams-Moulton (nonstiff)
K1 = 1, K2 = k , k = 1, . . . , 12

BDF (stiff)
K1 = k , K2 = 0, k = 1, . . . , 5

Nonlinear system (BDF)

ODE: ẋ = f (x)

G(xn) ≡ xn − β0hnf (xn) −
∑

i>0 αn,i xn−i = 0

DAE: F (ẋ , x) = 0

G(xn) ≡ F
(

(β0hn)−1 ∑

i≥0 αn,i xn−i , xn

)

= 0

BDF: xn − β0hn ẋn =
∑k

i=1 αn,i xn−i

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

10

12
k=1
k=2
k=3
k=4
k=5
k=6

Absolute stability regions

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

LMM: variable-order, variable-step BDF

Fixed-leading coefficient form of BDF formulas

Predictor-corrector implementation

Predictor xn(0) =
∑k

i=1 αp
i xn−i + βp

0 hnẋn−1

Corrector xn =
∑k

i=1 αixn−i + β0hnf (xn)

Use weighted residual mean square norms

‖x‖wrms :=
√

(xi wi)2/N wi = 1
rtol|xi |+atoli

Error control mechanism

Step size selection
1 Estimate error: E(hn) = C ·

(

xn − xn(0)

)

2 Accept step if ‖E(hn)‖wrms < 1.0
3 Estimate error at next step E(h′

n) ≈ (h′
n/hn)

k E(hn)
4 Select h′

n such that ‖E(h′
n)‖wrms < 1.0

Method order selection
1 Estimate errors for next higher and lower orders
2 Select the order that gives the largest step size meeting the error

condition

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

LMM: nonlinear system solution

Use predicted value xn(0) as initial guess for the nonlinear
iteration

Nonstiff systems: Functional iteration

xn(m+1) = β0hnf
(

xn(m)

)

Stiff systems: Newton iteration

M
(

xn(m+1) − xn(m)

)

= −G
(

xn(m)

)

ODE:
M ≈ I − ∂f/∂x , γ = β0hn

DAE:
M ≈ ∂F/∂y + γ∂F/∂ẋ , γ = 1/(β0hn)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Implicit integration methods

LMM: linear system solution

Direct dense

Direct band

Direct sparse
Iterative linear solvers

Result in Inexact Newton nonlinear solver
Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
Only require matrix-vector products
Require preconditioner for the Newton matrix M

Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated by difference quotients

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Newton’s method

Basic method

F (x) = 0

x0 : starting point

Basis for most nonlinear solvers: Newton’s method

J(xk)∆xk = −F (xk) where J(x) = Fx (x)

xk+1 = xk + ∆xk

Convergences if x0 is close enough to x∗ and ∃J−1(x∗)

Quadratic convergence: ‖x k+1 − x∗‖ ≤ C‖xk − x∗‖, for some
C > 0

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Newton’s method

Modifications and enhancements

Two main problems with Newton’s method:
Need to calculate the Jacobian matrix

Matrix-free linear solvers
Multi-secant methods (Broyden)
Use successive approximations Bk to the Jacobian matrix J(x k)

No guaranteed global convergence
Line search with backtracking
Use only a fraction of the full Newton step: x k+1 = xk + λ∆xk
Select λ to obtain

sufficient decrease in F relative to the step length
a minimum step length relative to the initial rate of decrease
full Newton step close to x∗.

Trust region methods

KINSOL provides matrix-free linear solvers and line search with
backtracking capabilities.

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Inexact Newton

Inexact Newton

Solve linear systems approximately

Fx (xk)∆xk ≈ −F (xk)

such that ‖F (xk) + Fx (xk)∆xk‖ ≤ ηk‖F (xk)‖

xk+1 = xk + ∆xk

Stopping tolerance ηk is selected to prevent “over-solves”
Newton’s method is based on a linear model

Bad approximation far from solution ⇒ loose tolerances
Good approximation close to solution ⇒ tight tolerances

Eisenstat and Walker
Choice 1 ηk = ‖F (xk)‖ − ‖F (xk−1) + Fx (xk−1)∆xk−1‖/‖F (xk−1)‖

Choice 2 ηk = 0.9
(

‖F (xk)‖/‖F (xk−1)‖
)2

Constant value
Kelley ηk = 0.1
ODE literature ηk = 0.05

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Preconditioning

Preconditioned Krylov solver

Linear system within the Newton iteration: Js = r

Krylov iterative methods find the solution in the subspace
K (J, r) = {r , Jr , J2r , . . .}

Their convergence rate depends on the spectral properties of J

Preconditioning: replace the linear system with an equivalent
one that has more favorable spectral properties

Preconditioning on the right: (JP−1)(Ps) = r
The preconditioner P must approximate the Jacobian matrix, yet
be reasonably cheap to evaluate and efficient to solve

setup phase: evaluate and preprocess P (infrequent)
solve phase: solve systems Px = b (frequent)

Many preconditioner types
Jacobi preconditioner
Incomplete factorization preconditioners
Block preconditioners
Preconditioners based on the underlying problem

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Definitions, applications, methods

Definitions

Definition

Broadly speaking, sensitivity analysis (SA) is the study of how the variation in the
output of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation.

First-order SA problem (dynamical systems)

F (ẋ , x , p) = 0

y(p) = O(x , p)

where x ∈ Rn and y ∈ R (O : Rn × RNp → R).
Considering the Taylor expansion of y around the nominal value p

y(p + δp) = y(p) + ∇py(p) · δp + O(δp2)

we define the first-order SA problem as the problem of computing the gradient ∇py .

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Definitions, applications, methods

Applications of SA

Model evaluation
Finding most and least influential parameters

Model reduction
Reducing model complexity, while preserving its input-output
behavior

Data assimilation
Merging observed information into a model in order to improve its
accuracy

Uncertainty quantification
Characterizing (quantitatively) and reducing uncertainty in model
predictions

Dynamically-constrained optimization
Improving model response (better performance, better
agreement with observations, etc.)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Definitions, applications, methods

Methods (1/2)

Parameter-dependent ODE system

Model: F (ẋ , x , p) = 0
Output functional: y(p) = O(x , p)

DSA - discrete sensitivity analysis

dy
dpi

(p) ≈
y(p + eiδpi) − y(p)

δpi

or

dy
dpi

(p) ≈
y(p + eiδpi) − y(p − eiδpi)

2δpi

ei is the i-th column of the identity matrix and δp is a vector of
perturbations.

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Definitions, applications, methods

Methods (2/2)

Parameter-dependent ODE system

Model: F (ẋ , x , p) = 0
Output functional: y(p) = O(x , p)

FSA

Fẋ ṡi + Fxsi + Fpi = 0

and

∇py(p) = [· · · ,Oxsi + Opi , · · ·]

Cost: (1 + Np) × cost(M)

ASA

(λ∗Fẋ)′ − λ∗Fx = −O∗
x 1

and

∇py(p) = 〈Fp, λ〉 + Op

Cost: (1 + Ny) × cost(M)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Forward sensitivity analysis

FSA for ODE and DAE systems

Parameter dependent system: F (ẋ , x , p) = 0 , x(t0) = x0(p)

Output functional: g(x , p)

Sensitivity systems: (i = 1, 2, . . . , Np)

Fẋ ṡi + Fxsi + Fpi = 0 , si(t0) = x0pi

Gradient of output functional:

∇pg = gxs + gp

where s = [s1, s2, . . . , sNp] is the sensitivity matrix

Good: Sensitivity system does not depend on O
Bad: Sensitivity system depends on p

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Forward sensitivity analysis

FSA: generation of the sensitivity system

ẋ = f (x , p) ⇒ ṡi = fxsi + fpi

Analytical

AD (ADIFOR, ADIC, ADOLC, ...)

Directional derivative approximations
{

fxsi ≈
f (t,x+σx si ,p)−f (t,x−σx si ,p)

2σx

fpi ≈
f (t,x,p+σi ei p)−f (t,x,p−σi ei)

2σi

{

σi = |p̄i |
√

max(rtol , ε)
σx = 1

max(1/σi ,‖si‖WRMS/|p̄i |)

or

fxsi + fpi ≈
f (t , x + σsi , p + σeip) − f (t , x − σsi , p − σei)

2σ

where σ = min(σi , σx)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Forward sensitivity analysis

FSA: implementation issues

Must take advantage of the shared structure with original system

Solutions (for implicit ODE/DAE integrators)

Staggered Direct (Caracotsios & Stewart, 1985):
iterate to convergence the nonlinear state system and then solve the linear
sensitivity systems
requires formation and storage of J; errors in J → errors in s

Simultaneous Corrector (Maly & Petzold, 1997):
solve simultaneously a nonlinear system for both states and sensitivity variables
requires formation of sensitivity r.h.s. at every iteration

Staggered Corrector (Feehery, Tolsma, Barton, 1997):
iterate to convergence the nonlinear state system and then use a Newton method
to solve for the sensitivity variables
with iterative linear solvers → effectively Staggered Direct

CVODES and IDAS implement the simultaneous corrector and two flavors of the

staggered corrector approaches.

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Adjoint sensitivity analysis

ASA - ODE derivation

Parameter dependent system: F (ẋ , x , p) = 0 , x(t0) = x0(p)

Output functional: G(p) =
∫ tf

t0
g(x , p) dt

∇pG =
∫ tf

t0
(gx s + gp) dt +

∫ tf
t0

λ∗ (Fẋ ṡ + Fx s + Fp) dt

=
∫ tf

t0
(gx + (λ∗Fẋ)′ − λ∗Fx) s dt +

∫ tf
t0

(gp − λ∗Fp) dt − (λ∗Fẋ s)|
tf
t0

Adjoint system:

(λ∗Fẋ)′ − λ∗Fx + gx = 0 , (λ∗Fẋ)|tf =?

Gradient of output functional:

∇pG =

∫ tf

t0

(gp − λ∗Fp) dt − (λ∗Fẋ s)t=tf + (λ∗Fẋ)t=t0 x0p

Good: Sensitivity system does not depend on p
Bad: Sensitivity system depends on O

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Adjoint sensitivity analysis

ASA for ODE and DAE systems (1/2)

Model: F (ẋ , x , p) = 0 , x(t0) = x0(p)

Output functional: G(p) =
∫ tf

t0
g(x , p) dt

Gradient: ∇pG =
∫ tf

t0
(gp − λ∗Fp) dt − (λ∗Fẋ xp)|

tf
t0

Adjoint system: (λ∗Fẋ)′ − λ∗Fx = −gx , λ∗Fẋ |tf =?

index-0 and index-1 DAE

F (ẋ , x) = 0 ⇒ (A∗λ)′ − B∗λ = 0

A = ∂F/∂ẋ nonsingular, B = ∂F/∂x
Can use

(λ∗A)t=tf
= 0

and therefore

∇pG =

∫ tf

t0

(gp − λ∗Fp) dt + (λ∗Fẋ)t=t0
x0p

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Adjoint sensitivity analysis

ASA for ODE and DAE systems (2/2)

Model: F (ẋ , x , p) = 0 , x(t0) = x0(p)

Output functional: G(p) =
∫ tf

t0
g(x , p) dt

Gradient: ∇pG =
∫ tf

t0
(gp − λ∗Fp) dt − (λ∗Fẋ xp)|

tf
t0

Adjoint system: (λ∗Fẋ)′ − λ∗Fx = −gx , λ∗Fẋ |tf =?

Hessenberg index-2 DAE

ẋd = f d (xd , xa, p)

0 = f a(xd , p)
⇒

λ̇d = −A∗λd − C∗λa − g∗
xd

0 = −B∗λd − g∗
xa

Search for final conditions of the form λd (tf) = (C∗ξ)t=tf

t = tf ⇒
{

λd∗B = −gxa ⇒ ξ∗CB = −gxa ⇒ ξ∗ = −gxa (CB)−1

f a(xd , p) = 0 → Cxd
p = −f a

p ⇒ λd∗xd
p = −xi∗f a

p

⇒ λd∗(tf) = −
(

gxa (CB)−1C
)

t=tf

⇒ ∇pG =
∫ tf

t0

(

gp + λd∗f d
p + λa∗f a

p
)

dt + λd∗(t0)xd
0p +

(

gxa (CB)−1f a
p
)

t=tf

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Adjoint sensitivity analysis

ASA implementation issues

Problem

Solution of the forward problem is needed in the backward integration
phase ⇒ need predictable and compact storage of state variables for
the solution of the adjoint system.

Solution: checkpointing

Simulations are reproducible from each checkpoint

Force Jacobian evaluation at checkpoints to avoid storing it

Store solution (and possibly first derivative) at all intermediate
steps between two consecutive checkpoints

Interpolation options: cubic Hermite, variable-order polynomial

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Adjoint sensitivity analysis

Checkpointing

Implementation

1 integrate forward step by step

2 dump checkpoint data after a given number of steps

3 continue until tf .

4 evaluate final conditions for adjoint problem

5 store interpolation data on second forward pass

6 propagate adjoint variables backward in time

7 total cost: 2 forward passes + 1 backward pass

t0 tf

ck1 ck2 · · ·

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

SUNDIALS structure

The SUNDIALS suite: v.2.1.1

KINSOLCVODE CVODES

SUNDIALS

KINSPGMRIDADENSECVSPGMRCVBANDCVDENSECVDIAG IDABAND IDASPGMR

DENSE BAND SPGMR NVECTOR

SERIAL PARALLEL

IDA

CVSPGMR IDASPGMR KINSPGMR

CVBANDPRE CVBBBDPRE IDABBBDPRE KINBBBDPRE

CVODEA

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

SUNDIALS structure

The SUNDIALS suite: next release

KINSOLCVODE CVODES

SUNDIALS

KINSPGMRIDADENSECVSPGMRCVBANDCVDENSECVDIAG IDABAND IDASPGMR

IDATFQMRIDASPBCG KINDENSE KINSPBCGCVSPBCG CVTFQMR

DENSE BAND SPGMR

SPBCG TFQMR

NVECTOR

SERIAL PARALLEL SPCPAR

KINTFQMR

KINBAND

IDA IDAS

CVSPGMR CVSPBCG CVTFQMR IDASPGMR IDASPBCG IDATFQMR KINSPGMR KINSPBCG KINTFQMR

CVBANDPRE CVBBBDPRE IDABBBDPRE KINBBBDPRE

CVODEA IDAA

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Usage

IVP integration with CVODES

Main function
/* Set tolerances, initial time, etc. */
y = N VNew Serial(n);
/* Load I.C. into y */
cvode mem = CVodeCreate(CV BDF, CV NEWTON);
flag = CVodeMalloc(cvode mem, f, t0, y, CV SS, rtol, atol);
flag = CVodeSetFdata(cvode mem, my data);
flag = CVDense(cvode mem, n);
for (iout=1; iout<= NOUT; iout++) {
flag = CVode(cvode mem, tout, y, &t, CV NORMAL);
/* Process solution y */

}
N VDestroy Serial(y);
CVodeFree(cvode mem);

Required functions

right-hand side

quadrature integrand

g-function

Optional functions

Jacobian data

preconditioner

error weights

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Usage

FSA with CVODES

Main function (instrumented for FSA)
y = N VNew*(n,...);
cvode mem = CVodeCreate(...);
flag = CVodeMalloc(...);
flag = CVodeSet*(...);
yS = N VNewVectorArray*(...);
flag = CVodeSensMalloc(...);
flag = CVodeSetSens*(...);
for (iout=1; iout<= NOUT; iout++) {
flag = CVode(...);
flag = CVodeGetSens(...);

}
N VDestroy*(y);
N VDestroyVectorArray*(...,yS);
CVodeFree(cvode mem);

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Usage

ASA with CVODES

Main function (instrumented for ASA)
y = N VNew*(n,...);
cvode mem = CVodeCreate(...);
flag = CVodeMalloc(...);
flag = CVodeSet*(...);
cvadj mem = CVadjMalloc(...);
for (iout=1; iout<= NOUT; iout++) {
/*flag = CVode(...);*/
flag = CVodeF(...);

}
yB = N VNew*(nB,...);
flag = CVodeCreateB(...);
flag = CVodeMallocB(...);
flag = CVodeSet*B(...);
flag = CVodeB(...);
N VDestroy*(y);
CVodeFree(cvode mem);
N VDestroy*(yB);
CVadjFree(cvadj mem);

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Applications

Some packages using SUNDIALS solvers

ARDRA Neutron and Radiation Transport
http://www.llnl.gov/casc/Ardra/

DELPHIN4 Coupled heat, moisture, air and salt transport
http://www.bauklimatik-dresden.de/

EMSO Environment for Modeling, Simulation, and Optimization
http://vrtech.com.br/rps/emso.html

magpar Parallel finite Element Micromagnetics Package
http://magnet.atp.tuwien.ac.at/scholz/magpar/

Mathematica Wolfram Research
http://www.wolfram.com/products/mathematica/index.html

NEURON Empirically-based simulations of networks of neurons
http://www.neuron.yale.edu/neuron/

PETSc The Portable, Extensible Toolkit for Scientific Computation
http://www-unix.mcs.anl.gov/petsc/

SAMRAI Structured Adaptive Mesh Refinement Application Infrastructure
http://www.llnl.gov/CASC/samrai/

SBML Systems Biology Markup Language
http://www.sbml.org/software/libsbml/

http://www.llnl.gov/casc/Ardra/
http://www.bauklimatik-dresden.de/
http://vrtech.com.br/rps/emso.html
http://magnet.atp.tuwien.ac.at/scholz/magpar/
http://www.wolfram.com/products/mathematica/index.html
http://www.neuron.yale.edu/neuron/
http://www-unix.mcs.anl.gov/petsc/
http://www.llnl.gov/CASC/samrai/
http://www.sbml.org/software/libsbml/

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Applications

Simulation applications

@LLNL

CVODE is used in a 3D parallel tokamak turbulence model in LLNL’s Magnetic
Fusion Energy Division.
Typical run: 7 unknowns on a 64x64x40 mesh, with 60 processors

KINSOL with a hypre multigrid preconditioner is used in LLNL’s Geosciences
Division for an unsaturated porous media flow model.
Fully scalable performance has been obtained on up to 225 processors on ASCI
Blue.

All solvers are being used to solve 3D neutral particle transport problems in
CASC.
Scalable performance obtained on up to 5800 processors on ASCI Red.

Other applications: disease detection, astrophysics, magnetohydrodynamics, etc.

Other

Many more in very different areas...

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Applications

Sensitivity analysis applications

@LLNL

Solution sensitivities in neutral particle transport applications

Sensitivity analysis of groundwater simulations

Sensitivity analysis of chemically reacting flows

Sensitivity analysis of radiation transport (diffusion approximation)

Inversion of large-scale time dependent PDEs (atmospheric releases).

Other

Optimization of periodic adsorption processes (L.T. Biegler, CMU)

Nonlinear model predictive control (A. Romanenko, Enginum)

Controller design (Y. Cao, Cranfield U.)

SUNDIALS: overview ODE and DAE integration Nonlinear systems Sensitivity analysis SUNDIALS: usage

Availability

www.llnl.gov/CASC/sundials

The SUNDIALS suite

Open source, BSD license

Complete documentation (HTML, PDF, PS)

User support (mailing lists, Bugzilla bug
tracking)

(May 19, 2005): Matlab interface to CVODES
and KINSOL

The SUNDIALS team
Peter Brown, Aaron Collier, Keith Grant, Alan
Hindmarsh, Steven Lee, Radu Serban, Dan
Shumaker, Carol Woodward
Past contributors
Scott Cohen and Allan Taylor

UCRL-PRES-214811
This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.

	SUNDIALS: overview
	Description

	ODE and DAE integration
	Initial value problems
	Implicit integration methods

	Nonlinear systems
	Newton's method
	Inexact Newton
	Preconditioning

	Sensitivity analysis
	Definitions, applications, methods
	Forward sensitivity analysis
	Adjoint sensitivity analysis

	SUNDIALS: usage, applications, availability
	SUNDIALS structure
	Usage
	Applications
	Availability

